Block co-polymers can have several properties that are not present in comparable statistical co-polymers, and interest in studying their properties has increased considerably during recent decade [1]. Block co-polymers can have, for example, the ability to form self-organized structures [2]. Especially co-polymers consisting of PDM (poly[2-(dimethylamino)ethyl methacrylate]), PEO (poly(ethylene oxide)), and/or PPO (poly(propylene oxide) blocks have found applications in the field of hydrophobizing paper [3] or other hydrophilic surfaces [4], strengthening agents for wood fibre networks [5,6] and even some biomedical applications [2]. In addition, some special solution properties have been found for copolymers containing cationizable PDM block. E.g. at high pH PEO-b-PDM will aggregate at the temperature where the PDM sequence is totally deprotonated and sufficiently hydrophobic [7]. PDM can also easily be modified into a permanently cationic form by methylation of the tertiary amine group to form a quaternary amine [8,9]. Abstract. To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylamino)ethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide) (PEO), poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), and poly(propylene oxide) (PPO). The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylamino)ethyl methacrylate]-block (PDM) affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO) behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.