A new series of 7-methoxy-2-[4-(t-amino-1-yl)oxy]-naphthalene derivatives; 7-methoxy-2-{[4-(2-methylpiperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ2), 7-methoxy-2-{[4-(2,6-dimethylpiperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ3), 7-methoxy-2{[4-(piperidine)but-2-yn-1-yl]oxy}-naphthalene (RZ4), 7-methoxy-2-{[4-(pyrrolidine)but-2-yn-1-yl]oxy}-naphthalene (RZ5), 7-methoxy-2-{[4-(N-methylpiperazine)but-2-yn-1-yl]oxy}-naphthalene (RZ6), 7-methoxy -2-{[4-(hexamethyleneimine)but-2-yn-1-yl]oxy}-naphthalene (RZ7) were synthesized and screened in vitro as potential antimicrobial agents. Antimicrobial activity were evaluated by measuring the minimum inhibitory and bactericidal/fungicidal concentration (MIC, MBC and MFC). RZ2, RZ5, RZ6 and RZ7 showed the highest antimicrobial activity against S. aureus with MIC value 62.5 µg/ml, compounds RZ2, RZ4, RZ5, and RZ7 have the highest antimicrobial activity against B. subtilis with MIC vale 62.5 µg/ml, RZ3, RZ6 have the same antimicrobial activity with MIC value 125µg/ml, compounds. RZ4, RZ5, RZ6 and RZ7 have the highest antimicrobial activity against E. coli with MIC value 125 µg/ml, all compounds have the same MIC value against P. aeruginosa (125 µg/ml). RZ2, RZ4, RZ5, RZ6, RZ7 showed the highest antifungal activity with MIC of 62.5 µg/ml. In conclusion, the synthesized compounds showed good antimicrobial activity and promising potency against gram positive bacteria, gram negative bacteria and fungi.