Based on the potential redox and catalytic ability of oxovanadium complexes, our goal was to characterize the physical properties of two such complexes to be used as mediators for laccase. Computational studies, TD-DFT calculations and docking simulations were performed to elucidate the interaction between laccase and the two anionic complexes (aquabis(oxalato)oxidovanadate(IV) (1) and bis(oxalato)dioxidovanadate(V)) (2), respectively. Electrochemical measurements carried out on anion complexes of 1 and 2 docked into laccase were compared to laccase alone, showing changes in oxidation-reduction potential and current value, especially with the oxovanadium anion of 2. Since both internal tiny magnetic fields of ferromagnetic catalysts and external applied magnetic fields were found in previous investigations to constitute effective ways to improve the oxygen transfer rate, the magnetic susceptibility was measured. A valence change proneness was confirmed with higher valence for the oxovanadium anion of 2, which is in accordance with the electrochemical results.