The role of templating has been found in a myriad of chemical processes and is especially important in biological systems. The most remarkable example, perhaps, is DNA replication, where a single strand of DNA templates the formation of a complementary strand through the assembly of nucleotide bases. Outside biological systems, templates play integral roles in the formation of crown ethers [ 11, catenanes and rotaxanes [2, 31 (Chapter 3), molecularly imprinted polymers [4] (Chapter 2), zeolites [5], polyporphyrins [6] (Chapter I), and other large-ring systems [7]. Thus, the role of templating is invaluable to the field of supramolecular chemistry [ 1 b, 81, where chemical synthesis of complex structures is not limited by classical approaches that strictly involve covalent bond formation. Templates aid the efficient assembly of multiple components into a particular geometry through the use of non-covalent interactions such as hydrogen bonding, w-stacking, and van der Waals attractions. The word template has been described by Busch as a chemical entity that "organizes an assembly of atoms, with respect to one or more geometric loci, in order to achieve a particular linking of the atoms" [9]. In this chapter, we discuss recent research that fits this definition nicely, and focuses on the use of templating in the synthesis of the host-guest systems known as carceplexes [lo], hemicarceplexes [lo], and molecular capsules [ 111.Donald J. Cram created the field of carceplexes and hemicarceplexes [ 101. Carceplexes are defined as globe-shaped molecules that permanently entrap smaller guest molecules within their confines [ lo]. Consequently, the incarcerated guest cannot escape without breaking covalent bonds [ 101. Hemicarceplexes are closely related to carceplexes as both can contain molecules within their interiors. However, hemicarceplexes contain portals through which the entrapped guest can exit, given the appropriate conditions [lo]. Carcerands and hemicarcerands are analogous to the above, consisting of the corresponding host shell containing no entrapped guest [ 101. Capsules are reversible assemblies formed in solution consisting of closed-off spheroid cavities capable of encapsulating guests while excluding the solvent. The presence of a suitable template appears to be required for the formation of carceplexes, and sometimes for the formation of hemicarceplexes and molecular capsules.