A permeabilidade da barreira hematoencefálica (BBB, do inglês blood-brain barrier) é uma propriedade fundamental no planejamento de fármacos que atuam no sistema nervoso central (CNS) no tratamento de doenças como a epilepsia, depressão, mal de Alzheimer, mal de Parkinson, esquizofrenia, entre outras. No presente trabalho, estudos das relações quantitativas entre a estrutura e propriedade (QSPR) foram conduzidos para o desenvolvimento e validação de modelos in silico para a predição da permeabilidade da BBB. O conjunto de dados utilizado possui significativa diversidade química e ampla distribuição dos valores da propriedade alvo. Os modelos de QSPR gerados apresentaram bons parâmetros estatísticos e foram empregados com sucesso na predição de um conjunto teste de 48 compostos. Os modelos desenvolvidos são úteis na identificação, seleção e planejamento de candidatos a novos fármacos com propriedades farmacocinéticas otimizadas.Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.Keywords: ADME, central nervous system, pharmacokinetics, QSPR, blood-brain barrier
IntroductionThe challenges facing the pharmaceutical industry are tremendous at every step of the drug discovery and development process. Technology-based discovery certainly is one of the most important elements to increase research and development (R&D) productivity. The new paradigm of drug discovery involves a combination of classical and modern technologies with innovative strategies addressed to the design of new chemical entities (NCEs) with improved properties. 1-3 NCEs expected to advance into clinical trials should have a good balance of pharmacodynamic and pharmacokinetic properties. For the past decades, problems with absorption, distribution, metabolism and excretion (ADME) have been one of the major reasons for the failure of attractive compounds in advanced stages of drug development. [4][5][6] Traditionally, in vivo and in vitro models are employed in the pharmaceutical industry for the evaluation of pharmacokinetic parameters. However, animal models and cell-based assays are typically time consuming and expensive, and thus not applicable to the early screening of large libraries of compounds. [7][8][9] In recent years, the appearance and consolida...