An electrocatalytic nitrogen reduction reaction is considered
a
potential approach for green ammonia productiona zero-carbon
fertilizer, fuel, and energy storage for renewable energy. To harness
the synergistic properties of perovskites, the inherent dipole moment
due to their non-centrosymmetric structure (that facilitates better
charge separation), oxygen vacancies, and the presence of Ni metal
sites that permit activation and reduction of N2 efficiently,
the NiTiO3-based nanoelectrocatalysts have been synthesized.
Further, these catalysts have been modified with ultra-small metal
nanocrystal co-catalysts to form heterointerfaces that not only aid
to improve the charge separation but also activate N2 and
lower overpotential requirements. The appearance of peaks corresponding
to (012), (104), (110), (11–3), (024), (11–6), (018),
(027), and (300) confirms the formation of rhombohedral NiTiO3. The shift in the XRD peak corresponding to the (104) plane
to a smaller 2θ value and peak shifting and widening of Raman
spectra imply the lattice distortion that signifies the formation
of Pd–NiTiO3 and Pt–NiTiO3 heterojunction
electrocatalysts with the loadings of 0.4 and 0.3 wt % of Pd and Pt,
respectively, as confirmed by ICP-OES analysis. The detailed XPS analysis
reveals the presence of Pd (0), Pd (II), and Pt (0), Pt (II) in respective
electrocatalysts. The appearance of XPS peaks at 528.7 and 531.1 eV
suggests the presence of oxidative oxygen species (O2–/O–) and the presence of oxygen defects due to oxygen
vacancy. The detailed nitrogen reduction (NRR) investigation exhibits
a 5-fold enhancement in ammonia yield rate (∼14.28 μg
h–1 mg–1 at −0.003 V vs
RHE), a faradic efficiency of 27% (at 0.097 V vs RHE) for Pd–NiTiO3 electrocatalysts than that for bare NiTiO3 (3.08
μg h–1 mg–1), and 9-folds
higher than that of the activity shown by the commercial TiO2 (P25) (1.52 μg h–1mg–1). The formation of ammonia was further confirmed by using isotopic
nitrogen as the feeding gas. Furthermore, the highest NRR is observed
at lower cathodic potential (−0.003 V vs RHE) in the case of
the Pd–NiTiO3 electrocatalyst than that of the Pt–NiTiO3 electrocatalyst (−0.203 V vs RHE), implying significantly
reduced overpotential requirement. Such enhanced NRR activity with
lower overpotential requirement in the case of the Pd–NiTiO3 electrocatalyst is due to efficient charge separation as
shown by the semicircle Nyquist plot, decreased photoluminescence
emission intensity, shorter average lifetime (∼29 ns) of excitons,
appropriate band bending, and improved activation of N2 by the oxygen vacancies and heterointerface formed between Pd nanocrystals
and NiTiO3. Furthermore, no change is observed in the current
density, after stabilization in the initial few seconds, even up to
2 h, which signifies that these electrocatalysts are stable. The structural
and morphological integrity of the optimized catalyst remained even
after the nitrogen reduction reactions, as revealed by no significant
change observed in FESEM, elemental mapping, and EDS ana...