This paper reports the results of a detailed study of the optical response of boron difluoride curcuminoids to radiation exposure. Two lines of the dyes fundamentally different in structure (namely, symmetrical and asymmetrical) were tested. If the absorption responses of their solutions in chloroform to X-rays turns out to be quite close quantitatively (note that it has a very indicative visual manifestation – a gradual discoloration is observed in the dose range up to 300 Gy), the fluorescence ones differ notably: among other things, the former demonstrate much more sensitive reactions (the corresponding limit of detection values differ by up to 2.36-fold). Nevertheless, in both parameters, these dyes generally show good linearity of the response as in classical coordinates (up to ≈ 100–150 Gy), as in semi-logarithmic ones (up to 1000 Gy). Since the main reason for such behavior seems to be the radiation-induced decomposition of the dyes, its possible scheme and corresponding “weak links” in the structure of the molecules (in other words, radiosensitive elements) are proposed for each case. For example, these include N(CH3)2 fragments at the ends of dimethylaminostyryl groups. It is precisely their detachment that determines the observed optical response of asymmetrical dyes. Thus, the results obtained provide some insight into the possibilities of controlling the sensitivity of organic dyes to irradiation by changing their structure.