The lowered dispersibility of carboxylic acid polymers in the seawater system with high salt content results in reduced scale inhibition efficiency. To solve this problem, a series of carboxylic acid polymers containing ether groups were prepared by free radical polymerization using α‐allyl glycerol ether (AG) and vinyl monomers containing different numbers of carboxylic acid groups (acrylic acid [AA], maleic acid [MA], itaconic acid [IA], and aconitic acid [ANA]) as raw materials, and their scale inhibition properties in artificial seawater were studied. The static test results demonstrate that IA‐AG outperforms the other three polymers containing ether carboxylic acid in terms of scale inhibition performance, with CaCO3 and CaSO4 having scale inhibition rates of 95.16% and 98.73%, respectively. Furthermore, molecular dynamics (MD) simulation was employed to investigate the mechanism of scale inhibition by simulating the interaction between ether carboxylic acid polymers and the crystal surface. The results show that the order of binding energy between polymers and crystal faces is IA‐AG > ANA‐AG > MA‐AG > AA‐AG. The simulation results are in agreement with the experimental phenomena. The polymers can overcome their own deformation and adsorb on the crystal surfaces, thus inhibiting the growth of scale.