Herein, we focus on the chemical and physical properties of benzimidazole and its derivatives used for the synthesis of supramolecular materials. The design and modification of benzimidazole opens the scope of the diversity of structures (different sizes and morphologies) that can be built. The synthesized materials include not only small coordination complexes but also isolated crystals, metal-organic frameworks, metal-coordination polymers, smart nanocontainers, and more advanced macrostructures such as microflowers and nanowires. These supramolecular structures are based on noncovalent interactions, mostly on metal coordination chemistry and π-π stacking interactions. Moreover, the same molecule, due to its chemical structure, can undergo both sorts of interactions in order to induce the self-assembly into supramolecular materials. In this process, as it is shown in this chapter, the conditions used for the assembly determine the final structure and morphology of the fabricated macromolecule. Finally, we show most recent applications of these materials in the field of sensing, photoluminescence, fuel cell, and fabrication of new nanostructures.