The studies on the relationship between network structure/thermal properties of styrene copolymers based on adypic/sebacic acid modified unsaturated (epoxy) polyesters cured using different hardeners as well as the course of the cure reaction of polyesters with styrene have been presented. The adypic/sebacic acid modified unsaturated polyesters (UP) prepared from 4‐cyclohexene‐1,2‐dicarboxylic anhydride (THPA), maleic anhydride (MA), adypic acid (AA) or sebacic acid (SA) and ethylene glycol (EG) and their epoxy derivatives: adypic/sebacic acid modified unsaturated epoxy polyesters (UEP) were subjected to the cure process with styrene using diacyl peroxide: benzoyl peroxide (BPO) or the mixture of BPO/suitable acid anhydride: 4‐cyclohexene‐1,2‐dicarboxylic anhydride (THPA) or glutaric anhydride (GA). Thermal properties were evaluated by means of DSC, TG and DMA analyses. It was proved that studied properties were significantly depended on polyester's structure and the type of applied curing system. Generally, higher values of E'20°C, tgδmax, E”, νe, IDT, Tk for styrene copolymers based on UEP were obtained. It was connected with more cross‐linked polymer network structure due to the possible copolymerization reaction of carbon‐carbon double bonds of polyester with styrene and additional polyaddition of epoxy to anhydride groups or thermal curing of epoxy groups. The additional connections between polyester's chains led to obtain more stiff and thermal stable polymeric materials. Moreover, the increase of saturated aliphatic acid's chain length in polyester backbone caused the decrease of E'20°C, tgδmax, E”, νe, IDT, Tk values of styrene copolymers. It suggested that copolymers based on polyesters prepared from acid containing more methylene groups in their structure were characterized by more flexible polymer network due to the “laxity” effect of aliphatic chains.