Two isostructural ligands with either nitrile (Lnit) or isonitrile (Liso) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself (Lnit) or its precursors (Liso) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2] differ in their composition: whereas Lnit forms dinuclear complexes, Liso exclusively forms trinuclear ones. Furthermore, they also differ in their chiral self‐sorting behavior as (rac)‐Liso undergoes exclusive social self‐sorting leading to a heterochiral assembly, whereas (rac)‐Liso shows a twofold preference for the formation of homochiral complexes in a narcissistic self‐sorting manner as proven by ESI mass spectrometry and NMR spectroscopy. Interestingly, upon crystallization, these discrete aggregates undergo structural transformation to coordination polymers, as evidenced by single‐crystal X‐ray diffraction.