The protonation of
several Ni-centered pyridine-2-thiolate photocatalysts
for hydrogen evolution is investigated using X-ray absorption spectroscopy
(XAS). While protonation of the pyridinethiolate ligand was previously
thought to result in partial dechelation from the metal at the pyridyl
N site, we instead observe complete dissociation of the protonated
ligand and replacement by solvent molecules. A combination of Ni K-edge
and S K-edge XAS of the catalyst Ni(bpy)(pyS)
2
(bpy = 2,2′-bipyridine;
pyS = pyridine-2-thiolate) identifies the structure of the fully protonated
catalyst as a solvated [Ni(bpy)(DMF)
4
]
2+
(DMF
= dimethylformamide) complex and the dissociated ligands as the N-protonated
2-thiopyridone (pyS-H). This surprising result is further supported
by UV–vis absorption spectroscopy and DFT calculations and
is demonstrated for additional catalyst structures and solvent environments
using a combination of XAS and UV–vis spectroscopy. Following
protonation, electrochemical measurements indicate that the solvated
Ni bipyridine complex acts as the primary electron-accepting species
during photocatalysis, resulting in separate protonated ligand and
reduced Ni species. The role of ligand dissociation is considered
in the larger context of the hydrogen evolution reaction (HER) mechanism.
As neither the pyS-H ligand nor the Ni bipyridine complex acts as
an efficient HER catalyst alone, the critical role of ligand coordination
is highlighted. This suggests that shifting the equilibrium toward
bound species by addition of excess protonated ligand (2-thiopyridone)
may improve the performance of pyridinethiolate-containing catalysts.