This research work is based on synthesis of eleven novel thiazole derivatives (3 a‐k) of thiophene carbaldehyde. All the synthesized compounds were successfully synthesized, characterized by 1H‐NMR and EI‐MS spectroscopic techniques and finally subjected for their in vitro α‐glucosidase inhibitory activity. Seven derivatives 3 i (IC50=10.21±1.84 μM), 3 b (IC50=11.14±0.99 μM), 3 f (IC50=13.21±2.76 μM), 3 h (IC50=14.21±0.31 μM), 3 k (IC50=15.21±1.02 μM), 3 e (IC50=16.21±1.32 μM), and 3 c (IC50=18.21±1.89 μM), in the series displayed excellent inhibitory potential better than the standard acarbose. However, two compounds 3 g (IC50=33.21±1.99 μM) and 3 d (IC50=42.31±2.12 μM) showed significant activity while two compounds 3 j and 3 a were found less active with IC50 values of 82.31±0.31 and 88.36±1.21 μM respectively. Additional research revealed that the compounds are not exhibiting any cytotoxic effects. The molecular docking study of these derivatives showed their good binding potential for α‐glucosidase active site with excellent interactions and docking scores.