2014
DOI: 10.1021/ma501634b
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis, Morphology, and Ion Conduction of Polyphosphazene Ammonium Iodide Ionomers

Abstract: Anion conducting polyphosphazene ionomer analogues of poly[bis(methoxyethoxyethoxy)phosphazene] (MEEP) were synthesized and their iodide transport properties studied. Polymer bound cations were quaternized with either short alkyl or short ether oxygen chains. X-ray scattering reveals a low q peak near 4 nm −1 arising from the backbone−backbone spacing between polyphosphazene chains, an ion-related peak at 8 nm −1 , and a peak at 15 nm −1 corresponding primarily to the amorphous halo of the PEO side chains. Bec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
32
0
3

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 28 publications
(37 citation statements)
references
References 43 publications
2
32
0
3
Order By: Relevance
“…The dashed line in Figure is a fit to Equation with iνimi2/(9ε0k)=105 K as the sole fitting parameter, showing that εnormals of the non‐ionic PCL polymer IVa above Tnormalm is well described by the Onsager equation. For the end‐functional PCL homo‐ and co‐polymers having an imidazolium cation with the associated anion (Br − or TFSI − ), the contribution of the ions to εnormals can be analyzed by simply adding the effect of ion pairs to Equation [6g],,, center[false(εsεfalse)false(2εs+εfalse)εsfalse(ε+2false)2]ionic PCL = νpairmpair29ε0kT+[false(εsεfalse)false(2εs+εfalse)εsfalse(ε+2false)2]non‐ionic PCLwherein νpair is the number density of dipoles and mpair is their dipole moment. The solid lines in Figure are the Onsager predictions of Equation for each poly­mer, assuming all ions are in the isolated ion pair state (νpair=…”
Section: Resultsmentioning
confidence: 99%
“…The dashed line in Figure is a fit to Equation with iνimi2/(9ε0k)=105 K as the sole fitting parameter, showing that εnormals of the non‐ionic PCL polymer IVa above Tnormalm is well described by the Onsager equation. For the end‐functional PCL homo‐ and co‐polymers having an imidazolium cation with the associated anion (Br − or TFSI − ), the contribution of the ions to εnormals can be analyzed by simply adding the effect of ion pairs to Equation [6g],,, center[false(εsεfalse)false(2εs+εfalse)εsfalse(ε+2false)2]ionic PCL = νpairmpair29ε0kT+[false(εsεfalse)false(2εs+εfalse)εsfalse(ε+2false)2]non‐ionic PCLwherein νpair is the number density of dipoles and mpair is their dipole moment. The solid lines in Figure are the Onsager predictions of Equation for each poly­mer, assuming all ions are in the isolated ion pair state (νpair=…”
Section: Resultsmentioning
confidence: 99%
“…Both methods have been successfully implemented (53), Mes* = 2,4,6-(t-Bu 3 )C 6 H 2 ]t ogive P-doped polybutadiene (54)a nd polyisoprene ( 55). [2a,100] While the first method has shown significant success with standard free radical, controlled free radical, and ring-opening metathesis polymerizations,m ore reactive borane functional groups can be challenging to introduce while maintaining good control over the polymer molecular weight.…”
Section: Lewis Acids For Stimuli Responsivenessmentioning
confidence: 99%
“…[2a, 100] Während das erste Verfahren mit den üblichen freien Radikal-, gesteuerten freien Radikal-und den ringçffnenden Metathese-Polymerisationen erhebliche Erfolge erzielt hat, kann die Einführung von reaktiven funktionellen Boran-Gruppen mit gleichzeitger guter Kontrolle über das Polymer-Molekulargewicht eine anspruchsvolle Aufgabe sein. [94] Unten:anionische Polymerisation von Mes*P=CR-CH=CH 2 [R = H( 52)und Me (53), Mes * = 2,4,6-(t-Bu 3 )C 6 H 2 ]z uP-dotiertem Polybutadien (54)u nd Polyisopren ( 55). Beide Methoden wurden zur Synthese einer Vielzahl von Bor-haltigen Polymeren mit unterschiedlichen funktionellen Gruppen und Architekturen angewendet.…”
Section: Lewis-säuren Fürstimuliresponsivitätunclassified
“…Jahrhunderts von Stokes erstmals beschrieben und später von Allcock in den 1960er Jahren neu untersucht und bekannt gemacht wurden, [190] haben sich wegen ihrer Biokompatibilität, Bioabbaubarkeit, Kettenflexibilitätu nd einfachen chemischen Modifizierbarket zu einer der am umfassendsten untersuchten Klassen von anorganischen Polymeren entwickelt. Diese sehr spezifischen Eigenschaften haben zu einer Vielzahl von Anwendungen geführt, vornehmlich als Biomaterialien, [54] aber auch als Komponenten von Solarzellen und Batterie-Elektrolyten, [55] Gastrennmembranen [56] und Elastomeren. [57] Ausführliche frühere Übersichtsartikel haben die große Vielseitigkeit in der Synthese, über mehrere Jahrzehnte intensiver Forschung hinweg, aufgezeigt.…”
Section: Polyphosphazeneunclassified
See 1 more Smart Citation