Oxygenic phototrophs use chlorophylls (Chls) as photosynthetically active pigments. A variety of Chl molecules have been found in photosynthetic eukaryotes including green plants, algae, and cyanobacteria. Here we review their molecular structures with stereochemistry, occurrence in light-harvesting antennas and reaction centers, biosyntheses in the late stage, chemical stabilities, and visible absorption maxima in diethyl ether. The observed maxima are comparable to those of semisynthetic Chl analogs, methyl pyropheophorbides, in dichloromethane. The effects of their peripheral substituents and core π-conjugation on the maxima of the monomeric states are discussed. Notably, the oxidation along the molecular x-axis in Chl-a produces its accessory pigments, Chls-b/c, and introduction of an electron-withdrawing formyl group along the y-axis perpendicular to the x-axis affords far-red light absorbing Chls-d/f.