Developing well‐defined structures and desired properties for porous organic polymer (POP) supported catalysts by controlling their composition, size, and morphology is of great significance. Herein, we report a preparation of polyaniline (PANI) supported Pd nanoparticles (NPs) with controllable structure and morphology. The protocol involves the introduction of MnO2 with different crystal structures (α, β, γ, δ, ϵ) serving as both the reaction template and the oxidant. The different forms of MnO2 each convert aniline to a PANI that contains a unique regular distribution of benzene and quinone. This leads to the Pd/PANI catalysts with different charge transfer properties between Pd and PANI, as well as different dispersions of the metal NPs. In this case, the Pd/ϵ‐PANI catalyst greatly improves the turnover frequency (TOF; to 88.3 h−1), in the reductive coupling of furfural derivatives to potential bio‐based plasticizers. Systematic characterizations reveal the unique oxidation state of the support in the Pd/ϵ‐PANI catalyst and coordination mode of Pd that drives the formation of highly dispersed Pd nanoclusters. Density functional theory (DFT) calculations show the more electron rich Pd/PANI catalyst has the lower energy barrier in the oxidative addition step, which favors the C−C coupling reaction.