Interaction of the urokinase receptor (uPAR) with its binding partners including the urokinase-type plasminogen activator (uPA) at the cell surface triggers a series of proteolytic and signaling events that promote invasion and metastasis. Here, we report the discovery of a small molecule (IPR-456) and its derivatives that inhibit the tight uPAR·uPA protein-protein interaction. IPR-456 was discovered by virtual screening against multiple conformations of uPAR sampled from explicit-solvent molecular dynamics simulations. Biochemical characterization reveal that the compound binds to uPAR with sub-micromolar affinity (Kd = 310 nM) and inhibits the tight protein-protein interaction with an IC50 of 10 μM. Free energy calculations based on explicit-solvent molecular dynamics simulations suggested the importance of a carboxylate moiety on IPR-456, which was confirmed by the activity of several derivatives including IPR-803. Immunofluorescence imaging showed that IPR-456 inhibited uPA binding to uPAR of breast MDA-MB-231 tumor cells with an IC50 of 8 μM. The compounds blocked MDA-MB-231 cell invasion, but IPR-456 showed little effect on MDA-MB-231 migration, and no effect on adhesion, suggesting that uPAR mediates these processes through its other binding partners.