Das wachsende Verständnis für das fein abgestimmte Zusammenspiel aus Struktur und Funktion von Nukleinsäuren resultiert aus unzähligen Forschungsprojekten. Forschende stehen dabei vor der Herausforderung, dass die zu untersuchenden Oligonukleotide sowohl modifiziert als auch in ausreichender Menge und Reinheit dargestellt werden müssen. Die chemische Festphasensynthese ist ein bewährtes Mittel zur Synthese hochmodifizierter DNA und RNA. Allerdings werden Oligonukleotide mit zunehmender Länge unzugänglicher, da die einzelnen Kupplungsreaktionen nicht quantitativ ablaufen, was zu schwer abtrennbaren Abbruchsequenzen führt. Hinzu kommt, dass während der chemischen Synthese harsche Reaktionsbedingungen nötig sind, denen die gewünschten Modifikationen standhalten müssen. (Chemo-) enzymatische Methoden können diese Hürden überwinden und somit den Zugang zu biologisch interessanten, längeren modifizierten Sequenzen ermöglichen. Jedoch erfolgt der enzymatische Einbau von Modifikationen ohne aufwendige Optimierung lediglich statistisch verteilt. Um weitere Erfolge im Bereich der Strukturaufklärung zu erzielen, werden somit Synthesemethoden benötigt, die sich zum positionsspezifischen Einbau von Modifikationen eignen und gleichzeitig den Zugang zu längeren Oligonukleotiden ermöglichen. Zur Untersuchung der Zusammenhänge zwischen Struktur und Funktion haben sich in den letzten Jahren lichtadressierbare Verbindungen als gefragte Modifikationen erwiesen. Der Einsatz von Licht als mildes, nicht-invasives Auslösesignal stellt besonders im biologischen Kontext eine interessante Herangehensweise dar. Um hochwertige Aussagen über das Verhalten von Oligonukleotiden in komplexer biologischer Umgebung machen zu können, muss durch die gezielte Platzierung lichtaktivierbarer Verbindungen ein effizientes AN/AUS-Verhältnis geschaffen werden. Der Einbau photolabiler Schutzgruppen erlaubt eine vorübergehende Beeinflussung der Oligonukleotidstruktur, die durch Abspaltung der Schutzgruppe irreversibel (re-) aktiviert werden kann. Im Gegensatz dazu ermöglicht der Einbau von Photoschaltern eine reversible Adressierbarkeit durch Isomerisierungsprozesse. Die Synthese komplexer gezielt-markierter Oligonukleotide erfolgt zumeist chemisch und ist daher längenlimitiert. Ziel dieser Doktorarbeit war es, beide Fragestellungen zu vereinen und eine chemo-enzymatische Methode zur RNA-Synthese zu untersuchen, die zum einen die positionsspezifische Modifizierung mit lichtaktivierbaren Einheiten erlaubt und darüber hinaus die Längenlimitierung der chemischen Festphasensynthese überkommt. Im Zentrum der Methode stehen drei enzymatische Reaktionsschritte zum Einbau von photolabil- und photoschaltbar-modifizierten Nukleosid-3‘,5‘-Bisphosphaten: I) eine 3‘-Verlängerung, in der die modifizierten Bisphosphate mit T4 RNA Ligase 1 mit dem 3‘-Ende einer RNA verknüpft werden; II) die Dephosphorylierung des 3‘-Phosphats mit Shrimp Alkaline Phophatase und III) die Verknüpfung der 3‘-terminal modifizierten RNA mit einem zweiten 5‘-phosphorylierten RNA-Fragment, wodurch eine Gesamtsequenz mit gezielt platzierter Modifikation entsteht (Abb. I). Im ersten Teilprojekt wurden in kollaborativer Arbeit zunächst benötigte photolabile NPE- und photoschaltbare Azobenzol-C-Nukleosid-3‘,5‘-Bisphosphate synthetisiert und grundlegende Bedingungen der enzymatischen Reaktionen erarbeitet. Hierbei konnte der enzymatische Syntheseansatz erfolgreich in Lösung umgesetzt und der chemo-enzymatische Einbau aller synthetisierten Bausteine nachgewiesen werden. Aufbauend auf diesen Erkenntnissen wurde die Methode in eigenständigen Arbeiten weiterverfolgt, um den multiplen Einbau NPE-modifizierter Nukleosid-3‘,5‘-Bisphosphate in direkter Nachbarschaft sowie deren Einbau in DNA/RNA-Mixmere mit Phosphodiester- oder Phosphorthioatrückgrat zu untersuchen. Es konnte gezeigt werden, dass die verwendeten Enzyme neben lichtaktivierbaren Modifikationen zusätzliche Anpassungen der Phosphateinheit sowie unterschiedliche Ribosebausteine in Kombination tolerieren. Da exogene RNA schnell von Exonukleasen abgebaut und somit unwirksam wird, werden zahlreiche stabilisierende Anpassungen an synthetischen RNAs vorgenommen. Zu den häufigsten zählen Phosphorthioate und Modifikationen der Ribose. Mit der erfolgreichen Modifikation der chimären Oligonukleotide eröffnet die erarbeitete Methode einen wichtigen Zugang zu therapeutisch interessanten Oligonukleotiden. Ein weiterer wichtiger Schritt in Richtung biologisch relevanter Anwendungsmöglichkeiten konnte mit der Synthese, Charakterisierung und Umsetzung eines DEACM-geschützten Uridin-3‘,5‘-Bisphosphates (pUDEACMp) errungen werden. Im Vergleich zur verwendeten NPE-Schutzgruppe ist das Absorptionsspektrum der DEACM-Schutzgruppe bathochrom-verschoben, was eine Abspaltung mit Wellenlängen > 400 nm erlaubt. Dadurch können Zellschäden vermieden und Oligonukleotide mit NPE- und DEACM-Modifikation wellenlängenselektiv angesprochen werden...