Molecular interaction studies between nanoparticles (NPs) and biomolecules are of great importance in the field of nanomedicine as they affect many physiological processes. Therefore, the interaction of zinc sulphide nanoparticles (ZnS NPs) with calf thymus deoxyribonucleic acid (CT DNA) and its significance was analyzed using ultraviolet (UV)–visible light, fluorescence, circular dichroism (CD), zeta potential, viscometry, electrochemical, and polymerase chain reaction methods. Fluorescence quenching analysis revealed that the fluorescence of ZnS NPs was quenched using CT DNA through a static quenching mechanism. The negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) showed that the binding process was spontaneous, exothermic, and van der Waals or hydrogen bonding plays an important role in the interaction of ZnS NPs with CT DNA. Thermal melting (Tm) studies indicated a decrease in the Tm of CT DNA, suggesting the destabilization of CT DNA upon interaction with ZnS NPs. In addition, the results obtained from competitive binding, zeta potential, CD, and viscometry measurements showed that the interaction of ZnS NPs with CT DNA is through groove binding. Electrochemical analysis further confirmed the observed results from various spectroscopic and other related studies, in which decrease in the redox peak current along with changes in peak potential (CV) and increase in the electrical resistance (EIS) indicated the interaction between ZnS NPs and CT DNA. Furthermore, PCR analysis using DNA polymerase revealed the potential of ZnS NPs to inhibit DNA replication in vitro. ZnS NP–CT DNA interaction studies can be explored to define new horizons in biomedical applications of ZnS NPs.