The chemical stability and content of organic functional groups significantly affect the application of materials in the field of adsorption. In this study, we quantitatively studied the effect of in-situ co-condensation and post grafting on the physico-chemical properties and sorption properties of modified mesoporous silica. The results showed that the grafting method changed the morphology of mesoporous silica while the in-situ method kept the spherical morphology well, and the amino groups were both successfully introduced into the materials. Besides, the amino content of the material prepared by in-situ method (ami-MSN) was 2.71 mmol/g, which was significantly higher than the 0.98 mmol/g of the grafting method (ami-g-MS). Moreover, the chemical stability of functional groups in ami-MSN was much better than ami-g-MS. Furthermore, ami-MSN showed better capability in removing toxic metals of Pb, Cd, Ni, and Cu, and the removal efficiency of Pb reached 98.80%. Besides, ami-MSN exhibited higher dynamic CO2 adsorption of 0.78 mmol/g than ami-g-MS of 0.34 mmol/g. This study revealed the relationship between modification methods and the modification efficiency, functional groups stability, and sorption properties through quantitative comparative studies, which provided a reference for preparing modified mesoporous silica materials with high sorption properties.