Direct
synthetic routes to amidines are desired, as they are widely
present in many biologically active compounds and organometallic complexes. N-Acyl amidines in particular can be used as a starting
material for the synthesis of heterocycles and have several other
applications. Here, we describe a fast and practical copper-catalyzed
three-component reaction of aryl acetylenes, amines, and easily accessible
1,4,2-dioxazol-5-ones to N-acyl amidines, generating
CO2 as the only byproduct. Transformation of the dioxazolones
on the Cu catalyst generates acyl nitrenes that rapidly insert into
the copper acetylide Cu–C bond rather than undergoing an undesired
Curtius rearrangement. For nonaromatic dioxazolones, [Cu(OAc)(Xantphos)]
is a superior catalyst for this transformation, leading to full substrate
conversion within 10 min. For the direct synthesis of N-benzoyl amidine derivatives from aromatic dioxazolones, [Cu(OAc)(Xantphos)]
proved to be inactive, but moderate to good yields were obtained when
using simple copper(I) iodide (CuI) as the catalyst. Mechanistic studies
revealed the aerobic instability of one of the intermediates at low
catalyst loadings, but the reaction could still be performed in air
for most substrates when using catalyst loadings of 5 mol %. The herein
reported procedure not only provides a new, practical, and direct
route to N-acyl amidines but also represents a new
type of C–N bond formation.