Abstract:The morpheein model of allosteric regulation can be applied as a novel approach to the discovery of small molecule allosteric modulators of protein function. Morpheeins are homo-oligomeric proteins where, under physiological conditions, the oligomer can dissociate, the dissociated units can change conformation, and the altered conformational state can reassociate to a structurally and functionally distinct oligomer. This phenomenon serves as a basis for allostery, as a basis for conformational diseases, as a basis for drug discovery, and may be applicable to personalized medicine such as in the prediction of drug side effects. Each of these relationships has been established for the prototype morpheein, porphobilinogen synthase, where the conformational disease is a porphyria and the drug application is in antimicrobial discovery. These data are presented along with a discussion of other drug targets for which the morpheein model of allostery may apply. Such targets include HIV integrase, TNF , -tryptase, and p53.