The ability to control the surface chemistry of inorganic oxides has a profound impact on numerous applications, including lubrication, antifouling, and anticorrosion. While often overlooked as potential modifying agents given their lack of traditional functional groups, siloxanes have recently been shown to react readily with and covalently attach to inorganic oxide surfaces. Herein, we examine the reactions of cyclic siloxane vapor with solid interfaces via a ring-opening polymerization (ROP) initiated by the inherent acid/base characteristics of several smooth inorganic oxide surfaces. Surfaces are characterized by ellipsometry, dynamic contact angle analysis, and X-ray photoelectron spectroscopy (XPS). This technique requires no additional solvents and very little reactant to produce nanometerthick hydrophobic surfaces that exhibit low contact angle hysteresis. Additional studies with particulate surfaces suggest that this method prepares conformal coatings regardless of surface architecture.