Al 2 S 3 /MoS 2 nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. UV-Visible spectroscopy measurements reveal that the Al 2 S 3 /MoS 2 nanocomposite has maximum absorption at 353.04 nm and this peak position reflects the band gap of particles and it is found to be 2.51 eV which was calculated using Tauc plot. X-Ray diffraction (XRD) reveals crystaline size to be 49.85 nm which was calculated using Williamson-Hall (W-H) plot method. Photocatalytic degradation of acetic acid, chloroacetic acid and trichloroacetic acid has been studied by volumetric method using NaOH solution. Photocatalytic degradation of chloroacetic acid and acetic acid follows first order kinetics. The photodegradation efficiency for Al 2 S 3 /MoS 2 nanocomposite was found to be ≈97.8%. A Taft linear free energy relationship is noted for the catalysed reaction with ρ* = 0.233 and indicating electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 358 K indicating that enthalpy factor controls the reaction rate. The result of this paper suggests the possibility of degradation of organic compounds, industrial effluants and toxic organic compounds by photodegradation process by ecofriendly Al 2 S 3 / MoS 2 . The antibacterial activity of Al 2 S 3 /MoS 2 nanocomposite was investigated. These particles were shown to have an effective bactericide.