High quality ternary-alloyed CdTeSe quantum dots (QDs) have been synthesized via a simple one-pot approach in aqueous phase. CdTeSe QDs show an average size of 3.0 nm with good crystallinity, excellent monodispersity and relatively narrow size distribution. TiO 2 nanotubes (TNTs) were prepared by hydrothermal method with larger specific surface area (364.2 m 2 •g-1), and CdTeSe@TNTs were synthesized by in situ process. The absorption edge of CdTeSe@TNTs is red shifted significantly toward 697 nm. After sensitized with CdTeSe, the photoluminescence (PL) emission of CdTeSe@TNTs is significantly quenched, and the fluorescence lifetime of the composites is drastically decayed from 105.82 ns to 0.13 ns with a high photoinduced electron transfer rate (k et = 7.98×10 9 s-1) because of their high matchable lattice constant. In addition, under visible-light irradiation, the photocatalytic efficiency of rhodamine B (RhB) with CdTeSe@TNTs reaches 90% for 80 min. And the photocatalytic reaction rate constant for CdTeSe@TNTs is 0.0272 min-1 , which is 5.4 and 3.4 times larger than that of pure TNTs and CdTeSe QDs, respectively. It is due to the broad visible absorption of CdTeSe@TNTs and the faster photoinduced electron transfer from CdTeSe QDs to TNTs.