A series of mesoporous materials have been synthesized in an acid medium, with various structures, such as SBA-15. These materials have many properties which make them potential catalysts. Among these we highlight their high surface areas and pore walls relatively thick, resulting in a greater hydrothermal stability. This work aims at the synthesis and characterization of molecular sieve SBA-15 with molar composition: 1.0 TEOS: 0.017 P123: 5.7 HCl: 193 H2O and Co/SBA-15 and catalysts for the reaction of Ru/Co/SBA-15 Fischer Tropsch process. The materials were characterized by the techniques of X-ray diffraction (XRD), chemical analysis by X-ray spectrometry, energy dispersive (EDX) and Nitrogen adsorption (BET method). X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15 and that Co was present under the form of Co3O4 in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve.