PPV-based copolymers containing phenothiazine-5-oxide and phenothiazine-5, 5-dioxide moieties have been successfully synthesized by Wittig-Horner reaction and characterized by means of UV-vis, photoluminescence, electroluminescence spectra, and cyclic voltammetry. All of these copolymers can be dissolved in common organic solvents such as chloroform, tetrahydrofuran, and toluene. The PL maxima in the film state are located at 582, 556, and 552 nm for P1, P2, and P3, respectively. The HOMO and LUMO levels of P2 are found to be -5.21 and -2.68 eV, respectively; whereas those of P3 are found to be -5.26 and -2.71 eV, respectively. The cyclic voltammetry result indicates that the conversion of electron-donating sulfide to electronwithdrawing sulfoxide or sulfone group in polymers plays a dominating role in increasing its oxidation potential. Yellowish-green light ranging from 568 to 540 nm was observed for the single layer device with the configuration of ITO/Polymer/Ca/Al. Double layer devices with Zn (BTZ)2 as a hole blocking layer exhibited enhanced EL performance compared to the single layer devices. The maximum brightness of the double layer devices of P1, P2, and P3 is 278, 400, and 796 cd/m2, respectively. The results of EL and electrochemical analyses revealed that they are promising candidate materials for organic, light-emitting diodes with hole-transporting ability