The interaction between different types of substituents in dicarbollide ligands and their influence on the stabilization of various rotational conformers (rotamers) of transition metal bis(dicarbollide) complexes [3,3′-M(1,2-C2B9H11)2]− are considered. It has been shown that the formation of intramolecular CH···X hydrogen bonds between dicarbollide ligands is determined by the size of the proton acceptor atom X rather than its electronegativity. Due to the stabilization of rotamers with different dipole moments, intramolecular hydrogen bonds between ligands in transition metal bis(dicarbollide) complexes can have a significant impact on the biological properties of their derivatives. In the presence of external complexing metals, weak intramolecular CH···X hydrogen bonds can be broken to form stronger X—>M donor-acceptor bonds. This process is accompanied by the mutual rotation of dicarbollide ligands and can be used in sensors and molecular switches based on transition metal bis(dicarbollide) complexes.