Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China. Despite its potential, there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas. To address this gap, we conducted a two-year (2020–2021) field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield. The experiment comprised six treatments, i.e., plastic film-whole stalk spaced mulching in fall (PSF), plastic film-whole stalk spaced mulching in spring (PSS), black and silver plastic film-whole stalk spaced mulching in spring (BPSS), biodegradable film-whole stalk spaced mulching in spring (BSS), liquid film-whole stalk spaced mulching in spring (LSS), and non-mulching cultivation (CK). Results revealed that BPSS demonstrated the most significant yield increase, surpassing CK by a notable 10.0% and other mulching treatments by 2.4%–5.9%. The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation, particularly during hot season. Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching, leading to higher root growth indices (e.g., length and surface area), as well as higher leaf photosynthetic rate and dry matter accumulation per plant. Additionally, BPSS maintained higher average soil moisture content within 0–100 cm depth compared with biodegradable mulching and liquid mulching. As a result, BPSS increased activities of urease, catalase, and alkaline phosphatase, as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn, facilitating nutrient accessibility by the plant. These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas, highlighting the potential of BPSS cultivation.
Film-stalk spaced dual mulching is a new type of cultivation measure that is increasingly highlighted in semi-arid areas in China. Despite its potential, there is limited understanding of how different mulching materials affect both soil quality and crop yield in these areas. To address this gap, we conducted a two-year (2020–2021) field experiment in central China to explore the yield-enhancing mechanisms and assess the impact of various mulching materials on soil and corn yield. The experiment comprised six treatments, i.e., plastic film-whole stalk spaced mulching in fall (PSF), plastic film-whole stalk spaced mulching in spring (PSS), black and silver plastic film-whole stalk spaced mulching in spring (BPSS), biodegradable film-whole stalk spaced mulching in spring (BSS), liquid film-whole stalk spaced mulching in spring (LSS), and non-mulching cultivation (CK). Results revealed that BPSS demonstrated the most significant yield increase, surpassing CK by a notable 10.0% and other mulching treatments by 2.4%–5.9%. The efficacy of BPSS lied in its provision of favorable hydrothermal conditions for corn cultivation, particularly during hot season. Its cooling effect facilitated the establishment of optimal temperature conditions relative to transparent mulching, leading to higher root growth indices (e.g., length and surface area), as well as higher leaf photosynthetic rate and dry matter accumulation per plant. Additionally, BPSS maintained higher average soil moisture content within 0–100 cm depth compared with biodegradable mulching and liquid mulching. As a result, BPSS increased activities of urease, catalase, and alkaline phosphatase, as well as the diversity and abundance of soil bacteria and fungi in the rhizosphere zone of corn, facilitating nutrient accessibility by the plant. These findings suggest that selecting appropriate mulching materials is crucial for optimizing corn production in drought-prone areas, highlighting the potential of BPSS cultivation.
Mulching is a widely used agricultural practice that can significantly affect crop growth, yield, and economic outcomes, particularly in regions with varying climatic conditions. The present study evaluated the influence of various mulching practices on the growth, yield, and economic viability of common bean (Phaseolus vulgaris L.) cultivation in Tanzania. The study was conducted across three sites in the eastern agro-ecological zone of Tanzania: Kipera (E4 200–1000 m.a.s.l.), Mgeta (E14 500–000 m.a.s.l.), and Ndole (E2 500–1200 m.a.s.l.). Four mulching treatments—polythene mulch, synthetic biodegradable mulch, rice husk mulch, and a control group—were applied to assess their effects on plant growth and yield components. Results revealed significant variations in growth parameters and yield components across sites. Notably, polythene mulch and synthetic biodegradable mulch consistently outperformed the other treatments. Polythene mulch resulted in an average plant height of 68.37 cm, followed closely by synthetic biodegradable mulch at 68.26 cm, both significantly (p < 0.05) taller than rice husk mulch (62.79 cm) and the control (57.74 cm). Canopy coverage was highest with polythene mulch at 61.7%, followed by synthetic biodegradable mulch at 60.5%. Grain yields did not differ significantly between synthetic biodegradable mulch (2.64 t ha−1) and polythene mulch (2.67 t ha−1). Economic analysis indicated that synthetic biodegradable mulch offers promising marginal returns (MR: Tshs. 3,787,450 or USD 1,469) and a benefit-cost ratio (BCR) of 1.91, compared to polythene mulch (MR: Tshs. 4,114,050 or USD 1,595, BCR: 2.06). These findings suggest that synthetic biodegradable mulch is a sustainable and economically viable option for enhancing common bean production across diverse agro-ecological settings in Tanzania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.