The tear film lipid
layer (TFLL) that covers the ocular surface
contains several unique lipid classes, including
O
-acyl-ω-hydroxy fatty acids, type I-St diesters, and type II
diesters. While the TFLL represents a unique biological barrier that
plays a central role in stabilizing the entire tear film, little is
known about the properties and roles of individual lipid species.
This is because their isolation from tear samples in sufficient quantities
is a tedious task. To provide access to these species in their pure
form, and to shed light on their properties, we here report a general
strategy for the synthesis and structural characterization of these
lipid classes. In addition, we study the organization and behavior
of the lipids at the air–tear interface. Through these studies,
new insights on the relationship between structural features, such
as number of double bonds and the chain length, and film properties,
such as spreading and evaporation resistance, were uncovered.