We report one pot synthesis of uniform and stable polyvinyl pyrolidone (PVP) protected gold nanoparticles (Au NPs) using environmental friendly, glycerol as reducing agent. The effect of the presence of a capping agent (PVP) and the concentration of reactants (glycerol, tetra chloroauric acid, and NaOH) on the size and homogeneity of the Au NPs formed were investigated. Highly stable and well-distributed Au NPs were obtained at higher concentration of NaOH in the presence of PVP with a clear dependence of the size and the concentration of glycerol, NaOH and the presence of capping agent, whereas, large heterogeneous Au NPs were obtained in absence of PVP. The particle morphology, size and crystallinity were characterized using UV-Vis spectroscopy, transmission electron microscopy and X-ray diffraction techniques. The catalytic performance of as synthesized Au NPs for the reduction of o-nitro aniline was investigated in aqueous solution. The pseudo-first-order rate constants were also calculated for the catalytic reaction.