Anodic oxidation–promoted SNAr reactions of electron-rich aryl fluoride were developed. The anodic oxidation of 4-fluoroanisole in hexafluoroisopropyl alcohol (HFIP) with K2CO3 led to SNAr-type hexafluoroisopropoxylation, and the reaction was completed with a catalytic electrical input. The results of cyclic voltammetry suggest that the radical cation of 4-fluoroanisole, which would react with the alkoxide of HFIP, is generated. Electron transfer between the intermediate and the starting material constructs the catalytic cycle, and the elimination of fluoride from the Meisenheimer complex produces the desired compound.