2012
DOI: 10.1155/2012/816163
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis of Hyperbranched Polymer Using Slow Monomer Addition Method

Abstract: This paper details the synthesis of a well-defined hyperbranched polymer using a slow monomer addition method. The polymerization under slow monomer addition conditions results in a very low monomer concentration actually present in the reaction mixture, and the exclusive reaction of the monomer with the growing polyfunctional macromolecules occurs, resulting in a high molecular weight and a high degree of branching value. Thus, the slow monomer addition is a versatile and preferential method for the controlle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2019
2019

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(1 citation statement)
references
References 45 publications
0
1
0
Order By: Relevance
“…At the last decades, hyperbranched polymers have attracted great attention due to their dendritic architecture as highly branched polymers and their unique properties including lower viscosity, higher solubility, and higher amount of reactive terminal groups, compared with their equivalent linear analogues. Furthermore hyperbranched polymers are synthesized via one pot reaction using various techniques such as step-growth polycondensation, self-condensing vinyl polymerization, ring-opening polymerization, self-condensing ring-opening polymerization, and proton transfer polymerization [1][2][3][4][5]. Several types of hyperbranched polymers were prepared such as polyphenylenes, polyethers, polyesters, polyamides, polycarbonates, poly(ether ketones), and polyurethanes [6][7][8][9][10][11][12].…”
Section: Introductionmentioning
confidence: 99%
“…At the last decades, hyperbranched polymers have attracted great attention due to their dendritic architecture as highly branched polymers and their unique properties including lower viscosity, higher solubility, and higher amount of reactive terminal groups, compared with their equivalent linear analogues. Furthermore hyperbranched polymers are synthesized via one pot reaction using various techniques such as step-growth polycondensation, self-condensing vinyl polymerization, ring-opening polymerization, self-condensing ring-opening polymerization, and proton transfer polymerization [1][2][3][4][5]. Several types of hyperbranched polymers were prepared such as polyphenylenes, polyethers, polyesters, polyamides, polycarbonates, poly(ether ketones), and polyurethanes [6][7][8][9][10][11][12].…”
Section: Introductionmentioning
confidence: 99%