“…4d). The 4L-Fe 3 O 4 /CF anode performs better (1671.3 mA h g −1 at a current density of 0.1 A g −1 ; 504.6 mA h g −1 at 3 A g −1 ) than many reported Fe 3 O 4 -based anodes for LIBs (at 0.1 A g −1 ): ∼600 (Fe 3 O 4 /Fe 3 C/CF), 16 ∼732 (C/Fe 3 O 4/ rGO), 20 <772 (Fe 3 O 4 /rGO), 19 973 (Fe 3 O 4 /rGO), 42 1084 (porous Fe 3 O 4 /carbon microspheres (PFCMs)), 46 1101.4 (Fe 3 O 4 @C2e), 47 1334 (Fe 3 O 4 @C/rGO), 17 1411.8 (Fe 3 O 4 /C), 48 ∼1500 (hollow Fe 3 O 4 /graphene), 49 903 (at 0.2C, magnetic field-induced orientation-arranged Fe 3 O 4 /graphene nanocomposites) 38 and 1140 (at 0.2C, magnetic field assisted orientation-arranged Fe 3 O 4 nanocrystal/rGO paper) 39 mA h g −1 ; at 3 A g −1 : <250 (α-Fe 2 O 3 @Fe 3 O 4 heterostructure (CFH)), 21 335.8 (Fe 3 O 4 /rGO), 19 <400 (Fe 3 O 4 /Fe 3 C/CF), 16 <400 ( N -doped carbon nanofibers (Fe 3 O 4 /NCNFs)), 50 240 (at 5C, magnetic field-induced orientation-arranged Fe 3 O 4 /graphene nanocomposites), 38 <500 (Fe 3 O 4 @C/rGO) 51 and ∼500 (porous Fe 3 O 4 /carbon microspheres (PFCMs) 46 mA h g −1 ). Hence, such a layer-by-layer Fe 3 O 4 /CF alignment provides a novel method for advanced electrodes, which might be widely used in areas as supercapacitors, catalysis, adsorbents and fuel cells.…”