An account of the total synthesis of the tetracyclic alkaloid (−)-acutumine is presented. A firstgeneration approach to the spirocyclic subunit was unsuccessful due to incorrect regioselectivity in a radical cyclization. However, this work spawned a second-generation strategy in which the spirocycle was fashioned via a radical-polar crossover reaction. This process merged an intramolecular radical conjugate addition with an enolate hydroxylation, and created two stereocenters with excellent diastereoselectivity. The reaction was promoted by irradiation with a sunlamp, and a ditin reagent was required for aryl radical formation. These facts suggest that the substrate may function as a sensitizer, thereby facilitating homolytic cleavage of the ditin reagent. The propellane motif of the target was then installed via annulation of a pyrrolidine ring onto the spirocycle. The sequence of reactions used included a phenolic oxidation, an asymmetric ketone allylation mediated by Nakamura's chiral allylzinc reagent, an anionic oxy-Cope rearrangement, a one-pot ozonolysis-reductive amination, and a Lewis acid promoted cyclization of an amine onto an α,β-unsaturated dimethyl ketal. Further studies of the asymmetric ketone allylation demonstrated the ability of the Nakamura reagent to function well in a mismatched situation. A TiCl 4 -catalyzed regioselective methyl enol etherification of a 1,3-diketone completed the synthesis.