An analysis of recent trends indicates that CE can show real advantages over chromatographic methods in ultratrace enantioselective determination of biologically active compounds in complex biological matrices. It is due to high separation efficiency and many applicable in-capillary electromigration effects in CE (countercurrent migration, stacking effects) enhancing significantly (enantio)separability and enabling effective sample preparation (preconcentration, purification, analyte derivatization). Other possible on-line combinations of CE, such as column coupled CE-CE techniques and implementation of nonelectrophoretic techniques (extraction, membrane filtration, flow injection) into CE, offer additional approaches for highly effective sample preparation and separation. CE matured to a highly flexible and compatible technique enabling its hyphenation with powerful detection systems allowing extremely sensitive detection (e.g. LIF) and/or structural characterization of analytes (e.g. MS). Within the last decade, more as well as less conventional analytical on-line approaches have been effectively utilized in this field and their practical potentialities are demonstrated on many new application examples in this article. Here, three basic areas of (enantioselective) drug bioanalysis are highlighted and supported by a brief theoretical description of each individual approach in a compact review structure (to create integrated view on the topic), including (i) progressive enantioseparation approaches and new enantioselective agents, (ii) in-capillary sample preparation (preconcentration, purification, derivatization), and (iii) detection possibilities related to enhanced sensitivity and structural characterization.