The specific objectives of the presented study were related to the optimization of the production process of N-alkyl-, N,N-dialkyl-, and N-cycloalkyl-O-isobutyl thiocarbamate; trial industrial production of N-ethyl-O-isobutyl thiocarbamate; and the evaluation of flotation efficiency of N-ethyl-O-isobutyl thiocarbamate using a real ore sample. The optimization of thiocarbamate syntheses were performed by varying the molar ratio of isobutyl alcohol, carbon disulfide, potassium hydroxide, reaction time, and reaction temperature. In the first step, one-pot reaction took place to produce alkyl xanthate and was followed with chlorination to give alkyl chloroformate (O-alkyl carbonochloridothioate); finally, thiocarbamates were obtained by the reaction with corresponding amines. N-alkyl-O-ethyl thiocarbamate was synthesized as a comparative flotation agent. The structure of the synthesized compounds was confirmed by IR, 1H and 13C NMR, and MS instrumental methods, and the purity was determined by gas chromatographic method and elemental analysis. The optimized methods gave high-purity products in a significant yield that was also confirmed by semi-industrial production of N-ethyl-O-isobutyl thiocarbamate. The optimized thiocarbamate synthesis, without isolation of intermediates, is of great importance from the aspect of green technologies. Flotation efficiency test results, using real copper and zinc ores, showed the highest activity of N-ethyl-O-isobutyl thiocarbamate. The optimal one-pot thiocarbamate synthesis provides a simple procedure with a high conversion degree, and, thus, offers valuable technology applicable at the industrial scale.