In this paper, a series of polycrystalline ferrite samples were prepared with the composition of Zn0.1Li0.525-xTi0.15MgxFe2.225-0.5xO4 (LiZn) (x=0, 0.05, 0.10, 0.15 and 0.20) using both microwave sintering (MS) and conventional sintering (CS) technologies, respectively. The sintering time and temperature were 22 hours and 1000°C for the CS process, and 2 hours and 880°C for the MS process. Experiments showed that the MS treated LiZn ferrites exhibited more excellent magnetic properties and denser, more uniform micro-structures comparing with the ones treated by CS method. For the LiZn ferrite (x=0.1) sintered at 880°C using MS, the saturation magnetic induction (Bs) is 242.3 mT, the coercive force (Hc) is 135 A/m, the square ratio (Br/Bs) is 0.87 and the ferromagnetic resonance line-width (Δ H) is 143.2 Oe. These results represented very good properties for an X-band phase shifter material and indicated that the MS method is a potentially important technique for fabricating low temperature co-fired ceramics (LTCC).