Click chemistry is widely used for the efficient synthesis of 1,4‐disubstituted‐1,2,3‐triazole, a well‐known scaffold with widespread biological activity in the pharmaceutical sciences. In recent years, this magic ring has attracted the attention of scientists for its potential in designing and synthesizing new antifungal agents. Despite scientific and medical advances, fungal infections still account for more than 1.5 million deaths globally per year, especially in people with compromised immune function. This increasing trend is definitely related to a raise in the incidence of fungal infections and prevalence of antifungal drug resistance. In this condition, an urgent need for new alternative antifungals is undeniable. By focusing on the main aspects of reaction conditions in click chemistry, this review was conducted to classify antifungal 1,4‐disubstituted‐1,2,3‐triazole hybrids based on their chemical structures and introduce the most effective triazole antifungal derivatives. It was notable that in all reactions studied, Cu(I) catalysts generated in situ by the reduction in Cu(II) salts or used copper(I) salts directly, as well as mixed solvents of t‐BuOH/H2O and DMF/H2O had most application in the synthesis of triazole ring. The most effective antifungal activity was also observed in fluconazole analogs containing 1,2,3‐triazole moiety and benzo‐fused five/six‐membered heterocyclic conjugates with a 1,2,3‐triazole ring, even with better activity than fluconazole. The findings of structure–activity relationship and molecular docking of antifungal derivatives synthesized with copper‐catalyzed azide–alkyne cycloaddition (CuAAC) could offer medicinal chemistry scientists valuable data on designing and synthesizing novel triazole antifungals with more potent biological activities in their future research.