Enzyme-responsive polymers and their
assemblies offer great potential
to serve as key materials for the design of drug delivery systems
and other biomedical applications. However, the utilization of enzymes
to trigger the disassembly of polymeric amphiphiles, such as micelles,
also suffers from the limited accessibility of the enzyme to moieties
that are hidden inside the assembled structures. In this Perspective,
we will discuss examples for the utilization of high molecular precision
that dendritic structures offer to study the enzymatic degradation
of polymeric amphiphiles with high resolution. Up to date, several
different amphiphilic systems based on dendritic blocks have all shown
that small changes in the hydrophobicity and amphiphilicity strongly
affected the degree and rate of enzymatic degradation. The ability
to observe the huge effects due to relatively small variations in
the molecular structure of polymers can explain the limited enzymatic
degradation that is often observed for many reported polymeric assemblies.
The observed trends imply that the enzymes cannot reach the hydrophobic
core of the micelles, and instead, they gain access to the amphiphiles
by the unimer–micelle equilibrium, making the unimer exchange
rate a key parameter in tuning the enzymatic degradation rate. Several
approaches that are aimed at overcoming the stability–responsiveness
challenge are discussed as they open the way to the design of stable
and yet enzymatically responsive polymeric nanocarriers.