Although adenophostin A (AdA), the most potent agonist
of d-myo-inositol 1,4,5-trisphosphate receptors
(IP3R), is thought to mimic IP3, the relative
roles
of the different phosphate groups and the adenosine motif have not
been established. We synthesized all three possible bisphosphate analogues
of AdA and glucose 3,4-bisphosphate (7, AdA lacking the
2′-AMP). 2′-Dephospho-AdA (6) was prepared
via a novel regioselective dephosphorylation strategy. Assessment
of the abilities of these bisphosphates to stimulate intracellular
Ca2+ release using recombinant rat type 1 IP3R (IP3R1) revealed that 6, a mimic of Ins(4,5)P2, is only 4-fold less potent than IP3, while 7 is some 400-fold weaker and even 3″-dephospho-AdA
(5) is measurably active, despite missing one of the
vicinal bisphosphate groups normally thought to be crucial for IP3-like activity. Compound 6 is the most potent
bisphosphate yet discovered with activity at IP3R. Thus,
adenosine has a direct role independent of the 2′-phosphate
group in contributing toward the potency of adenophostins, the vicinal
bisphosphate motif is not essential for activity at the IP3R, as always thought, and it is possible to design potent agonists
with just two of the three phosphates. A model with a possible adenine–R504
interaction supports the activity of 5 and 6 and also allows a reappraisal of the unexpected activity previously
reported for the AdA regioisomer 2″-phospho-3″-dephospho-AdA 40.