The structure of unintegrated human immunodeficiency virus type 1 (HIV-1) DNA from acutely infected human lymphoid cells was analyzed by nuclease S1 cleavage. We observed a unique, discrete single-stranded gap in unintegrated linear DNA molecules, located near the center of the genome. Oligonucleotide primer extension experiments determined that the downstream limit of this gap coincides with the last nucleotide of a central copy of the polypurine tract found in all sequenced lentivirus genomes. Other retroviruses have only one copy of the polypurine tract at the 5' boundary of the 3' long terminal repeat, which has been shown to determine initiation of retroviral DNA plus-strand synthesis. We conclude from our observations that the central repeat of the polypurine tract can create an additional site for plus-strand synthesis initiation in lentiviruses. The central single-stranded gap was not found in circular DNA molecules, the vast majority of them carrying only one long terminal repeat. This finding suggests that the generation of such circular molecules is associated with early DNA ligation events.