Expanding the toolbox
of the biology and electronics mutual conjunction
is a primary aim of bioelectronics. The organic electrochemical transistor
(OECT) has undeniably become a predominant device for mixed conduction
materials, offering impressive transconduction properties alongside
a relatively simple device architecture. In this review, we focus
on the discussion of recent material developments in the area of mixed
conductors for bioelectronic applications by means of thorough structure–property
investigation and analysis of current challenges. Fundamental operation
principles of the OECT are revisited, and characterization methods
are highlighted. Current bioelectronic applications of organic mixed
ionic–electronic conductors (OMIECs) are underlined. Challenges
in the performance and operational stability of OECT channel materials
as well as potential strategies for mitigating them, are discussed.
This is further expanded to sketch a synopsis of the history of mixed
conduction materials for both p- and n-type channel operation, detailing
the synthetic challenges and milestones which have been overcome to
frequently produce higher performing OECT devices. The cumulative
work of multiple research groups is summarized, and synthetic design
strategies are extracted to present a series of design principles
that can be utilized to drive figure-of-merit performance values even
further for future OMIEC materials.