The tribological and mechanical properties of a novel polyamide 12 (PA12)/Al-Cu-Fe quasicrystal (QC) composite were systematically studied to accelerate efforts to develop a useful, melt-processable, and wear-resistant polymer composite. The wear and friction properties were characterized using a pin-on-disk configuration and the static and dynamic mechanical properties were investigated using dynamical mechanical analyzer, tensile tester, and an impact tester. Further, the melt processability of the composite was studied using a Haake torque rheometer and a dynamic rotational rheometer. The results suggest that PA12/QC composite can be meltprocessed into a wear-resistant material with enhanced mechanical properties for applications where combinations of wear resistance and good mechanical properties are required. The static mechanical properties of the composite were found to be consistent with the Halpin-Tsai equation and agreement was observed between the measured viscoelastic properties and theoretical predictions of Burgers' and Eilers' models.