Dicationic ligands incorporating two 2,2'-bipyridine units and two imidazolium moieties, [1](2+) and [2](2+), form stable chelate complexes with Cu(II) and Cu(I) in acetonitrile solution. Each Cu(II) complex binds two X(-) ions according to two stepwise equilibria, the first involving the Cu(II) centre and the second involving the bis-imidazolium compartment. Cu(I) complexes are able to host only one NO(3)(-) ion in the bis-imidazolium cavity, while other anions induce demetallation. Thus, in the presence of one equivalent of NO(3)(-), the Cu(II)/Cu(I) redox change makes the anion translocate quickly and reversibly from one binding site to the other within the [Cu(II,I)(1)](4+/3+) system, as demonstrated by cyclic voltammetry and controlled-potential electrolysis experiments.