Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Bergenia ciliata (BC) is a perennial herb that is frequently used as a traditional medicine. Its leaves and rhizomes are reported to have significant antioxidant, metal-reducing, and chelating properties. Although the rhizomes have the potential to synthesize silver nanoparticles (AgNPs), the leaves are yet to be studied for the green synthesis of metal nanoparticles. Likewise, photoirradiation also plays a significant role in the green synthesis of metal nanoparticles. In the current study, we intended to demonstrate the implications of photoirradiation by white light-emitting diode (LED) on the aqueous and methanol extracts (AE and ME, respectively) of BC leaf-mediated green synthesis of AgNPs. In this regard, the AgNP synthesis of the two extracts was performed in the dark and under 250-lumen (lm) and 825 lm LED bulbs. The physicochemical characterization of the synthesized nanoparticles was also performed, wherein percent nanoparticles yield, morphology of the nanoparticles, shape, size, percent elemental composition, crystallinity, and nanoparticle stability were studied. The nanoparticle-synthesizing potential of the two extracts contradicted significantly in the presence and absence of light, while the AE produced a significantly high number of nanoparticles in the dark (17.26%), and increasing light intensities only attenuated the nanoparticle synthesis, whereas ME synthesized comparatively negligible silver nanoparticles in the dark (1.23%). However, increasing light intensities significantly enhanced the number of nanoparticles synthesized in 825 lms (7.41%). The GCMS analysis further gave a comparative insight into the phytochemical composition of both extracts, wherein catechol and pyrogallol were identified as major reducing agents for nanoparticle synthesis. The influence of light intensities on the physiochemical characterization of AgNPs was predominant. While the size of both the AE- and ME-mediated AgNPs increased considerably (20–50 nm diameter) with increasing light intensities, the percent of silver atoms decreased significantly with increasing light intensities in both the AE- and ME-mediated AgNPs with ranges of 13–18% and 14–24%, respectively. The nanoparticle stability studies suggested that both the AE- and ME-mediated AgNPs were stable for up to 15 days when stored at 4 °C. The stability of both nanoparticles was attributed to the presence of a wide range of phytochemicals. In conclusion, the AE of BC leaves was reported to have significantly higher AgNP-synthesizing potential as compared to the ME. However, AE-mediated AgNP synthesis is attenuated by photoirradiation, whereas ME-mediated AgNP synthesis is enhanced by photoirradiation. The photoirradiation by white LED light increases the size of the AgNPs, while the percent silver composition declines, irrespective of the extract type. Both extracts, however, have nanoparticle stabilizing potential, thereby producing stable nanoparticles.
Bergenia ciliata (BC) is a perennial herb that is frequently used as a traditional medicine. Its leaves and rhizomes are reported to have significant antioxidant, metal-reducing, and chelating properties. Although the rhizomes have the potential to synthesize silver nanoparticles (AgNPs), the leaves are yet to be studied for the green synthesis of metal nanoparticles. Likewise, photoirradiation also plays a significant role in the green synthesis of metal nanoparticles. In the current study, we intended to demonstrate the implications of photoirradiation by white light-emitting diode (LED) on the aqueous and methanol extracts (AE and ME, respectively) of BC leaf-mediated green synthesis of AgNPs. In this regard, the AgNP synthesis of the two extracts was performed in the dark and under 250-lumen (lm) and 825 lm LED bulbs. The physicochemical characterization of the synthesized nanoparticles was also performed, wherein percent nanoparticles yield, morphology of the nanoparticles, shape, size, percent elemental composition, crystallinity, and nanoparticle stability were studied. The nanoparticle-synthesizing potential of the two extracts contradicted significantly in the presence and absence of light, while the AE produced a significantly high number of nanoparticles in the dark (17.26%), and increasing light intensities only attenuated the nanoparticle synthesis, whereas ME synthesized comparatively negligible silver nanoparticles in the dark (1.23%). However, increasing light intensities significantly enhanced the number of nanoparticles synthesized in 825 lms (7.41%). The GCMS analysis further gave a comparative insight into the phytochemical composition of both extracts, wherein catechol and pyrogallol were identified as major reducing agents for nanoparticle synthesis. The influence of light intensities on the physiochemical characterization of AgNPs was predominant. While the size of both the AE- and ME-mediated AgNPs increased considerably (20–50 nm diameter) with increasing light intensities, the percent of silver atoms decreased significantly with increasing light intensities in both the AE- and ME-mediated AgNPs with ranges of 13–18% and 14–24%, respectively. The nanoparticle stability studies suggested that both the AE- and ME-mediated AgNPs were stable for up to 15 days when stored at 4 °C. The stability of both nanoparticles was attributed to the presence of a wide range of phytochemicals. In conclusion, the AE of BC leaves was reported to have significantly higher AgNP-synthesizing potential as compared to the ME. However, AE-mediated AgNP synthesis is attenuated by photoirradiation, whereas ME-mediated AgNP synthesis is enhanced by photoirradiation. The photoirradiation by white LED light increases the size of the AgNPs, while the percent silver composition declines, irrespective of the extract type. Both extracts, however, have nanoparticle stabilizing potential, thereby producing stable nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.