In recent years, there has been rapid expansion of glycan synthesis, fueled by the recognition that the structural complexity of sugars translates to a myriad of biological functions. Such chemical syntheses involve many challenges, mostly due to the regio‐ and stereochemical aspects of glycosidic bond formation. One‐pot strategies were developed to assist in attaining faster and more economical access to the glycan constructs. In this front, achievements in protecting group manipulation, glycosylation, and combinations of these have been reported. Protecting group manipulations in one pot take advantage of the reaction compatibility of commonly used transformations, many of which occur in high regioselectivity. Sequential glycosylations, on the other hand, rely on leaving group orthogonalities and reactivity tuning, as well as the preactivation technique. Altogether, these approaches offer attractive means to the much needed glycan structures and, consequently, help usher in advances in glycoscience.