During a fire, passive fire protection systems are designed to prevent the spread of flames, smoke, and toxic gases. The new fire-retardant (FR) material, used for passive fire protection, is created by combining copolymers (VC–co–VAc) (Slovinyl KV 173) and PVC K70 with expanded graphite and plasticizers/modifiers such as diisononyl phthalate - DINP, diisononyl terephthalate - DINTP, dioctyl adipate - DOA, as well as plasticizers that are synthesized based on tertiary recycling of waste poly(ethylene terephthalate) (PET), 1-hexadecene, azodicarbonamide (ADC), tri(p-cresyl phosphate), epoxidized soybean oil (ESO) and acrylate emulsion (DH50, Ecrylic, or Flexryl, etc.). The obtained material's morphology was examined using an emission scanning electron microscope (FESEM) field. Tensile testing was used to determine the mechanical properties of the obtained samples, as well as Shore A hardness and toughness using the Charpy impact test. All samples obtained were tested according to non-flammability standards. To conform to the new trend of "green economy," the development of novel eco-friendly FRs with improved thermal and mechanical properties will include careful consideration of environmental protection and sustainable development.