The progress of ferrites and ferrites-based nanocomposites has become extensively popular in the field of photocatalytic wastewater treatment. This class of compound exhibit several fascinating properties related with their high stability, low cost, ease of functionalization, and biocompatibility. Ferrites carry outstanding magnetic behavior that helps in their easy recovery from the aqueous system thus reducing the cost. The morphology and various properties such as magnetic, absorption, optoelectronic of magnetic ferrites can be varied and optimize by applying different synthetic routes and reaction conditions. With this background we have briefly presented and reviewed the latest development in the field of photodegradation of aqueous pollutants using ferrites based heterojunction. Especially, the type-II, Z-scheme and S-scheme based heterojunction for enhanced pollutant degradation under the exposure of light are thoroughly describe. Ferrites have inherent potential in water remediation applications hence many examples were consider to impart valuable knowledge to the readers. Nevertheless, the large-scale utilization of these magnetic nanoparticles still needs to be explored. Therefore, the gaps, challenges and future prospective of ferrites nanoparticles are also explained to unveil the un-scrutinized standard of ferrites nanoparticles.