The addition of organometallic reagents to ketones constitutes one of the most straightforward synthetic approaches to tertiary alcohols. However, due to the absence of a well-behaved class of cyclopropanone surrogates accessible in enantioenriched form, such a trivial synthetic disconnection has only received very little attention in the literature for the formation of tertiary cyclopropanols. In this work, we report a simple and high-yielding synthesis 1-substituted cyclopropanols via the addition of diverse organometallic reagents to 1phenylsulfonylcyclopropanols, acting here as in situ precursors of the corresponding cyclopropanones. The transformation is shown to be amenable to sp, sp 2 or sp 3-hybridized organometallic C-nucleophiles under mild conditions, and the use of enantioenriched substrates led to highly diastereoselective additions and the formation of optically active cyclopropanols.